

Mission Possible

Description	Teams must design, build, test and document a Rube Goldberg like
	device that completes a required final task using a sequence of
	consecutive tasks.
Time Limit	30 minutes to set up, 1-3 minutes to run machine (5-8 days to build
	and test your machine)
Team Size	Up to 3 students
Details	Devices with potential safety hazards or concerns will not be
	permitted to run.
	All parts of the machine must fit in an imaginary cube that is
	100 cm x 100 cm x 100 cm. This does not include the motion
	of the final task.
	The device must be designed and constructed to carry out a
	sequence of tasks from the list below.
	The starting task and ending task must be the same for all
	teams.
	Teams may choose up to 8 other tasks to include in their
	machine. You must have a minimum of 3 other tasks.
	After the starting task, the machines must run on their own
	with no human interaction.
	Dead end tasks are not allowed, each task much initiate
	another task (except for the final task).
	Each moveable/adjustable object in the machine may only be
	used for one task.
	Electric components are limited to batteries, wires, switches
	and up to 3 motors. (switches and motors must be provided
	by student)
	All tasks must be viewable by the teacher.
	Teams must make a task sequence list that both describes
	and numbers the tasks included in their machine. Each task
	must also be labeled (by number) on the device itself.
Tasks	Starting Task: Initiate the first action by dropping a US
	quarter into the device from a position higher than the highest
	point on the device.
	Final Task: Raise a balloon higher than any other part of the
	device.
	Other Task Options
	 Open a closed plastic egg so the contents fall out and
	start the next action.

Exploring the World of Science

	\circ Use the force of moving air to push an object at least
	10 cm. This change in position must start the next
	action.
	 Turn a screw so that it moves an object a minimum of
	2 cm and starts the next action.
	 Release the energy stored in a spring such that it starts
	the next action
	 Use a pullov system to raise an object at least 5 cm
	• Use a pulley system to raise an object at least 5 cm
	before it starts the next action.
	 Combine two levers of different classes to lift an object
	so the object starts the next action.
	 Use a rack and pinion gear to move an object at least 5
	cm before it starts the next action.
	 Lift an object with a 3rd class lever at least 10 cm
	before it starts the next action.
	 Move and pour a granular material from one container
	to another. This movement must start the next action.
	 Use a gear system of at least three gears to move an
	object that starts the next action
	\sim Pull a mass up a ramp a distance of at least 10 cm
	The movement of this mass must start the next action
Composition	Doints will be awarded for each task completed successfully.
Sooring	Formus will be awarded for each task completed successfully with banua points for extra tasks
Sconing	With bonus points for extra tasks.
	I otal points: Approximately 80
Notebook	Mission Possible Design Notebook
Requirements	Notebook Points: 20 points
Timeline	Building and Testing Dates:
	Competition Date:

Exploring the World of Science